Kors
Администратор
- Регистрация
- 12 Дек 2014
- Сообщения
- 135.762
- Реакции
- 245.834
Складчина: [БХВ] Машинное обучение для приложений высокого риска: подходы к ответственному искусственному интеллекту [Джеймс Кертис, Парул Панди, Патрик Холл]
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Земляника лесная: алая капелька лета и тайный лекарь леса [Александра Клименко]
- Java-разработчик
- Гайд-шпаргалка по Findom по LoyalFans [Satibb]
- Книга символы и метафоры сказок [Леся Милославская]
- Игра-тренажер Нескучный маркетинг без бюджета [Леся Милославская]
- Как стать любимым учителем в школе. Изучаем и внедряем PowerPoint без стресса и паники [Наталья Паутова]