Kors
Администратор
- Регистрация
- 12 Дек 2014
- Сообщения
- 135.724
- Реакции
- 245.834
Складчина: [БХВ] Машинное обучение для приложений высокого риска: подходы к ответственному искусственному интеллекту [Джеймс Кертис, Парул Панди, Патрик Холл]
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Страниц: 464
Формат: скан pdf
Стоимость: нет
СКАЧАТЬ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Возможно, Вас ещё заинтересует:
- Денежный спринт [Денис Иванов]
- Психотерапия не спасёт. Пока ты не выберешь жить [Адрей Сокол]
- Частный канал доктора Амины (15.02.25 - 14.03.25) [Амина Пирманова]
- Частный канал доктора Амины (15.03.25 - 14.04.25) [Амина Пирманова]
- Курс "АстроХак: Как Обойти Негатив в Гороскопе и Включить Режим Удачи" [Сергей Шлеенков]
- HeyGen Видео Мастер: Создавайте качественный контент с ИИ аватарами [udemy] [Chetan Pujari]